D ate: W ed, 130 ct 2010 11:26:17-0400
T o: "D r. Baruch Fischhoff - C hair, N ational A cademy C ommittee on Improving Intelligence"〈baruch@cmu.edu>, "D r. Richard A tkinson - C hair - NRC/D BA SSE " rcatkinson@ucsd.edu, "Dr. Robert E. H all - A EA President and N ational A cademy of Sciences" ehall@stanford.edu, "D r. L awrence Brown - C hair, N RC C ommittee on N ational Statistics" $\triangleleft b r o w n @ w h a r t o n . u p e n n . e d u>$

From: Lloyd E theredge বloyd.etheredge@policyscience.net>

Subject: 170. The Reinventing Statistics chapter: Optimal Sampling Rates in Changing/Accelerating Systems?

Dear Dr. Fischhoff and Colleagues:

In \#139 I outlined for your Study G roup a meta-analysis of several alarming government forecasting failures, in different fields, and suggested the hypothesis that a N ational A cademy recommendation to Reinvent Statistics (along several dimensions) would get better future results, and more valid measures of current uncertainty.

A s one step in this project, It would be very helpful if the N ational A cademy of Sciences could design inquiries and tools that can establish optimal sampling rates for the changing/accelerating global systems within the purview of the G lobal 2025 forecasts and D N I oversight responsibilities. These estimates will impact both US government investments and global practices involving the data collection of governments in the emerging G-20 global system, the IM F and W orld Bank, and other institutions.

For example, in developing the vision and budgets for the new astroinformatics age and the LSST, [the attachment to \#162, archived at www.policyscience.net at II. D], N A SA 's justification for 2000 images/night (30 T erabytes/night) included the estimate of 100,000 changes/events in the H eavens every day with scientific/theoretical significance.
[T he N ational A cademy's new algorithms/estimation methods may give a range of answers: For human demographics, one census every decade might still be an acceptable sampling rate. At the other end, some leading hedge funds now want all global transaction data in all markets available in real time, with processing/analysis capacity for strategic trading in fractions of a second. Presumably the US T reasury and the CIA need some types of global economic/financial awareness at this level too.]
[A scientific basis will be hel pful. O therwise, when econometricians request reliable data more quickly than the 18 -month or 3 -year revision cycles, OMB may believe that they are just another interest group. A nd it probably is unclear to G eneral Cl lapper or NSF whether any additional quantitative studies of voting and electoral behavior in other countries are needed to detect changes that we do not already know about.]

Sampling Strategies to Learn Unknown Causal Processes and Links in Changing, Complex, Adaptive Systems: Global Ocean Comparisons

Some mathematical challenges of Reinventing Statistics for changing, complex, adaptive global systems [with N causal dimensions, where N is still unknown) might benefit from a highlevel, cross-disciplinary project.

For example, I am forwarding the (following) article from the W all Street Journal of O ctober 5, 2010 concerning the first decade-long ocean census. T here are indications, in the article, that for some dimensions and causal processes there should be faster sampling rates and - perhaps reinvented statistics to estimate uncertainties about complex causal processes and forecasts, at least below the "large predator" group:

Census Uncovers Oceans' Deep Secrets: Survey Names More Than a Thousand New Species, but Scientists Are Most Surprised by Huge Variety at Microbial Level

ByGAUTAM NAIK.WSJ. 10/5/2010

L O N D O N nH umans have studied the seas for centuries. But the publication M onday of the first global marine census suggests that the golden age of oceanic discovery still lies ahead.

Researchers participating in the census say they have now pinpointed about 250,000 species that live in the sea, but estimate that another 750,000 species still elude human discovery. A nd that's without counting millions of microbe species, which constitute 90% of the ocean's biomass.
"D iversity is an indicator of health in the oceans," said I an Poiner, who chaired the census steering committee, in an interview here, where the census was unveiled. Dr. Poiner added that because of increasing human impact on the oceansnin the form of pollution, over-fishing and acidificationn"we need to understand how sea life is being altered."

In their decade of trolling the seas, the census takers added 1,200 new species to the known tally a decade ago, and have yet to formally identify another 5,000 or so species collected over the same period. T he most common additions were crustaceans, followed by mollusks. Scores of new species were discovered even in the well-studied fish group.

Several findings were rich and strange: a hairy new species dubbed the yeti crab; a 21 -foot-long squid; a new species of lobster weighing 8.8 pounds; an ancient shrimp thought to have become extinct 50 million years ago.

O ther discoveries also took scientists by surprise. Science fiction had long imagined "anaerobic" creatures that could live without oxygen. A team sampling the deep M editerranean found three such species. These creatures, each the size of a pin head, live their entire lives hidden in sediment on the seafloor without oxygen.

C ensus takers also uncovered a living C aribbean fossil, the only remaining species of a genus of deep-water clams that flourished worldwide for more than 100 million years, and was thought during the 1800 s to have died out long ago.
"But the biggest surprise for me was microbial diversity," said Paul Snelgrove, a professor in the O cean Sciences C entre at M emorial University of N ewfoundland, C anada, who led a group charged with synthesizing elements from the various census projects. M icrobe species in the sea "could number a billion, swamping the number of other marine creatures."

L ife on land depends heavily on life in the sea. O cean creatures are a vital source of food and help to regulate the planet's climate, while marine algae called phytoplankton provide half our oxygen.

Since the marine census began, its data has yielded some 2,600 scientific papers. O ne study published July in the journal N ature found a strong link between rising sea temperatures and the decline of marine algae, the basis of the oceans' food chain.

A nother census-based study in N ature found that warmer seas can hurt marine diversity, potentially rearranging the distribution of ocean life.

The census takers conceded M onday, however, that they still have a poor understanding of both sea microbes and sea plants, both of which play a crucial role in oceanic life. And so far there are only limited data about marine life in the A rctic and A ntarctic seas, and in large swaths of the deep ocean.

Better understood is life at the top of the food chain. The populations of many large predatorsntuna and shark, as well as reef fish, deep-sea fish and turtlesnhave declined by an average of 90% from historical levels, in part because of overfishing. At the same time, seal and whale populations have partly rebounded in recent years after receiving protection in various parts of the world.

The main goal of the census is to provide a baseline for future measurements in three areas: diversity, distribution and abundance. W here do various sea creatures dwell and how are their lives interconnected? W hich species are thriving and which ones are dying?
"By comparing data over time periods we'll be able to tell what is changing" in the oceans, said Dr. Snelgrove.

The decade-long effort is the result of one of the biggest collaborations in the history of science, incorporating the work of 2,700 researchers from 80 countries, who logged 540 ocean expeditions.

It began in 2000 with $\$ 75$ million in funding from the A Ifred P. Sloan Foundation and completed at a total cost of $\$ 650$ million, with hundreds of other institutions, laboratories and governments pitching in. The 30-million marine observations made over the past decade will be available to researchers and the public online.

The census is part of a wider push to create digital libraries of biological data about life on earth. The marine data will feed into the E ncyclopedia of L ife project, an effort to document all 1.8 million named species on earth. There's also an International Barcode of Life project assembling D N A barcodes for all multi-cellular organisms. cientists intend to use such libraries to study biodiversity on a planet-wide level, just as different types of meteorological data are pooled to predict weather. Spurring the efforts is a new field known as biodiversity informatics, which uses sophisticated computer techniques to sift and analyze data in novel ways.

Dr. Snelgrove likened the census to a flashlight used to explore a dark house. W hile it's a start, "we haven't turned on the lights yet," he said.
\qquad
[sidebar]

[Ten-Year Project Deployed Technology Old and New]

The 2,700 researchers engaged in the global marine census were collecting specimens from some of the most inhospitable terrain on earthnfrom deep-ocean abysses and hydro-thermal vents to giant underwater mountains and frigid waters in the A ntarctic.

An array of technologynnew and oldnwas brought to bear. A ircraft remotely sensed the presence of animals using devices that measured the properties of scattered light. L arger creatures were tagged and their travels recorded and zapped to researchers via satellites.
Fish got tagged, too, and their migration patterns were picked up as they swam past acoustic listening lines. N ear the shore, nets, dredges and simple buckets were used to collect specimens. M ore elaborate collecting gear was dropped near coral reefs. M ud samples from the sea floor were pulled up with hollow drill bits known as coring devices.

An especially difficult place for a population census is the deep sea. The old-fashionednand cheapnway is to send down a sampling container at the end of a long rope. "But that's like trying to collect worms from a hot-air balloon at night," says Paul Snelgrove of M emorial University of N ewfoundland.

In recent years, scientists have relied on robotic submersibles that can dive to great depths. Though expensive, such missions are useful for sampling life in areas devoid of light and under crushing pressure.

In waters deeper than 1,000 meters, the census discovered squids with "elbows." T he creatures were up to 21 -feet long and waved large, long fins.
--By G autam Naik]
best wishes, LE

Dr. L loyd S. Etheredge - Fellow, W orld A cademy of A rt \& Science Policy Sciences C enter URL: www.policyscience.net

301-365-5241 (v); Iloyd.etheredge@policyscience.net (email)
[The Policy Sciences C enter, Inc. is a public foundation that develops and integrates knowledge and practice to advance human dignity. Its headquarters are 127 W all St., R oom 322 PO Box 208215 in N ew H aven, CT 06520-8215. It may be contacted at the office of its C hair, M ichael Reisman (michael.reisman@yale.edu), 203-432-1993. Further information about the Policy Sciences C enter and its projects, Society, and journal is available at www.policysciences.org.]

